MSLC Workshop Series

Math 1151 - Workshop
Sigma Notation and Riemann Sums

Sigma Notation:

Notation and Interpretation of $\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{n-1}+a_{n}$

- $\quad \sum$ (capital Greek sigma, corresponds to the letter S) indicates that we are to sum numbers of the form indicated by the general term
- a_{k} is the general term, which determines what is being summed, and can be defined however we want but is usually a formula containing the index: $a_{k}=f(k)$
- $\quad k$ is called the index; we may use any letter for the index, typically we use i, j, k, I, m, and n as indices
- The index runs through the positive integers, starting with the number below the \sum (in this case 1) and ending with the integer above the \sum (in this case n)
- The sum on the right hand side is the expanded form. (The \cdots contains all the terms I was too lazy to write.)
- The letter below the sigma is the variable with respect to the sum. All other letters are constants with respect to the sum.

Examples:

1. $\sum_{k=1}^{7} k=$
2. $\sum_{k=3}^{8} \frac{1}{k+2}=$
3. $\sum_{k=1}^{9} 4=$

$\frac{\text { Special Sum Formulas }}{n}$ $\sum_{k=1}^{n} 1=n$ $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$ $\sum_{k=1}^{n} k^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

> Examples:
> $\sum_{k=1}^{200} k=$
> $\sum_{i=1}^{30} i^{2}=$
> $\sum_{j=1}^{900} 1=$

Properties of Sigma Notation \sum is an operator that represents summation, and its properties are similar to the properties of addition (note what properties are not mentioned here).

- Multiplication by a common constant (also called a scalar multiple)

$$
\begin{aligned}
& \sum c a_{k}=c \sum a_{k} \\
& \sum\left(a_{k} \pm b_{k}\right)=\sum a_{k} \pm \sum b_{k}
\end{aligned}
$$

- Addition or Subtraction (this is also called the linearity property)

Example:
$\sum_{k=1}^{10}\left(2 k^{2}+k+5\right)=$
$\underline{\text { Riemann Sums: }} R=\sum_{k}($ height of k th rectangle $) \cdot($ width of $k t$ th rectangle $)$

Definition of a Riemann Sum:

Consider a function $f(x)$ defined on a closed interval $[a, b]$, partitioned into n subintervals of equal width by means of grid points $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b$. On each subinterval [x_{k-1}, x_{k}], pick a sample point x_{k}^{*}. Then the Riemann sum for f corresponding to this partition is given by:

$$
R=\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x=f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+\ldots+f\left(x_{n}^{*}\right) \Delta x
$$

- WIDTH: Δx

Since we partition the interval into evenly spaced partitions, we can calculate the width:

$$
\Delta x=\frac{b-a}{n}, \text { where } n \text { is the number of partitions. }
$$

- HEIGHT: $f\left(x_{k}^{*}\right)$

Also, we usually don't pick x_{k}^{*} arbitrarily. We use a rule to pick x_{k}^{*}. The most common rules to use are the Right Endpoint Rule, the Left Endpoint Rule, and the Midpoint Rule.

The most common rules to use are:

Midpoint Rule $\quad x_{k}^{*}=$

- If we partition the interval into more and more rectangles with smaller and smaller widths, we get closer to the (signed) area trapped between the curve $y=f(x)$ and the x-axis.

This is where Sigma Notation comes in because it becomes time consuming to add up all the terms when there are many, many rectangles.

Calculating A Riemann Sum

Using the Right Endpoint Rule, the Riemann sum becomes:

$$
\sum_{k=1}^{n} f(a+k \Delta x)(\Delta x)=\sum_{k=1}^{n}\left(\frac{(b-a)}{n}\right) f\left(a+k \frac{(b-a)}{n}\right)
$$

Using the Left Endpoint Rule, the Riemann sum becomes:

$$
\sum_{k=1}^{n} f(a+(k-1) \Delta x)(\Delta x)=\sum_{k=1}^{n}\left(\frac{(b-a)}{n}\right) f\left(a+(k-1) \frac{(b-a)}{n}\right)
$$

Using the Midpoint Rule, the Riemann sum becomes:

$$
\sum_{k=1}^{n} f\left(a+\left(\frac{(k-1)+k}{2}\right) \Delta x\right)(\Delta x)=\sum_{k=1}^{n}\left(\frac{(b-a)}{n}\right) f\left(a+\left(\frac{(k-1)+k}{2}\right) \frac{(b-a)}{n}\right)
$$

Example:

Estimate the area under $f(x)=x^{2}+2$ on the interval $[-2,3]$ using midpoint Riemann Sums and 5 rectangles. No need to use sigma notation here.

Example:

Estimate the area under $f(x)=x^{2}+2$ on the interval $[-2,3]$ using right Riemann Sums and 5 rectangles. Think about how you would write the sum using sigma notation.

Left Sum: Estimate the area under $f(x)=x^{2}+2$ on the interval [$-2,3$] using left Riemann Sums and 5 rectangles.

Example: Estimate the area under $f(x)=x^{3}$ on the interval [0,2] using right Riemann sums and 10 rectangles. Try using sigma notation!

First calculate the width: $\Delta x=$

Then the x -value for the right endpoint of the k th rectangle is $x_{k}^{*}=$

Thus the height of the k th rectangle is $f\left(x_{k}^{*}\right)=$

So the Riemann sum is

Now evaluate this sum using your knowledge of sigma notation!

Example: Estimate the area under $f(x)=x^{3}$ on the interval [0,2] using right Riemann sums and 50 rectangles. Try to use your work from the previous problem. What changes?

First calculate the width: $\Delta x=$

Then the x -value for the right endpoint of the k th rectangle is $x_{k}^{*}=$

Thus the height of the k th rectangle is $f\left(x_{k}^{*}\right)=$

So the Riemann sum is

Now evaluate this sum using your knowledge of sigma notation!

Being More Accurate:

What if we want to get a better approximation than any of the above give us? More rectangles will give us less extra or unused area between the curve and the x-axis. Let's again do a right sum for $f(x)=x^{3}$ on the interval $[0,2]$:

$$
\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}^{*}\right) \Delta \mathrm{x}
$$

using n equal subintervals.
First calculate the width: $\Delta x=$

Then the x -value for the right endpoint of the k th rectangle is $x_{k}^{*}=$

Thus the height of the k th rectangle is $f\left(x_{k}^{*}\right)=$

So the Riemann sum is

Now evaluate this sum using your knowledge of sigma notation!

If you have time, take the limit as n goes to infinity! This is the definite integral $\int_{0}^{2} x^{3} d x$.

Note that the definite integral can often be calculated as an area using geometry or with the fundamental theorem of calculus! Don't do more work than you have to!

