MSLC Workshop Series Math 1151 – Workshop 1 Limits and Continuity

Warm-up 1: Let $f(x) = \frac{x^2-6x+8}{x-2}$ and let g(x) = x - 4. Are f and g equivalent functions? Why or why not? Hint: Try factoring the numerator of f(x).

Draw the graphs of y = f(x) and y = g(x).

<u>Limits:</u>

There is a technical definition, but for us, the intuitive definition will do just fine. Here it is:

The limit *L* is the value the function "gets close to" if we make the *x* values "get close to" (but not equal to) *a*. We write $\lim_{x \to a} f(x) = L$.

Continuity:

Definition: A function f(x) is continuous at x = a if and only if $\lim_{x \to a} f(x) = f(a)$.

This definition actually states three things:

1. 2. 3.

Part 1: Limits and Continuity given by a Graph

Let y = f(x) be given by the graph below. Use the graph to find the following.

- 1. a. f(1) =b. $\lim_{x \to 1} f(x) =$ c. Is f continuous at x = 1? d. $\lim_{x \to -5^-} f(x) =$ 3. a. $\lim_{x \to -5^-} f(x) =$ 4. a. $\lim_{x \to 3^-} f(x) =$
 - b. $\lim_{x \to -5^+} f(x) =$ b. $\lim_{x \to 3^+} f(x)$
 - c. $\lim_{x \to -5} f(x) =$
 - d. f(-5) =
 - e. Is f continuous at x = -5?
 - f. $\lim_{x \to -5} (4f(x)) =$
- 5. a. $\lim_{x \to 6^{-}} f(x) =$
 - b. $\lim_{x \to 6^+} f(x) =$
 - c. $\lim_{x \to 6} f(x) =$
 - d. f(6) =
 - e. Is f continuous at x = 6?
 - f. $\lim_{x \to \infty} f(x) =$

g. $\lim_{x \to -\infty} f(x) =$

- a. $\lim_{x \to 3^{-}} f(x) =$ b. $\lim_{x \to 3^{+}} f(x) =$ c. $\lim_{x \to 3} f(x) =$ d. f(3) =
- e. Is f continuous at x = 3?

f.
$$\lim_{x \to 3} \sin\left(\frac{\pi}{3}f(x)\right) =$$

Part 2: Limits and Continuity given by an Equation

Hints about finding Limits:

- Plugging in nearby numbers will get you no credit unless the directions specifically say to do so.
- For any function which is CONTINUOUS, you can find the limit just by plugging in the number as long as the answer is defined.
 - In particular we know the following functions and all their combinations are continuous wherever they are defined:

• Ways you can combine continuous functions to get another continuous function:

• What do you do if the function is undefined? Look at the form of the limit!

_

zero nonzero number nonzero number zero zero zero

number infinity infinity infinity Limits Problems:

a)
$$f(x) = \frac{1}{x-1}$$

a) $\lim_{x \to 1^{-}} f(x) =$

b)
$$\lim_{x \to 1^+} f(x) =$$

c)
$$\lim_{x \to 1} f(x) =$$

- d) $\lim_{x \to \infty} f(x) =$
- e) List the asymptotes of *f*. Justify your answers by citing appropriate limits. Explain how you know there are no others.

b)
$$f(x) = \frac{x^2 - 1}{x + 1}$$

a) $\lim_{x \to -1^-} f(x) =$
b) $\lim_{x \to -1^+} f(x) =$
c) $\lim_{x \to -1} f(x) =$

d)
$$\lim_{x \to \infty} f(x) =$$

c)
$$h(x) = \frac{x^2 - 3x - 4}{2x^2 - 4x - 6} = \frac{(x - 4)(x + 1)}{2(x + 1)(x - 3)}$$

a) $\lim_{x \to -1} f(x) =$
b) $\lim_{x \to 3} f(x) =$

- c) $\lim_{x \to 4} f(x) =$
- d) $\lim_{x\to\infty} f(x) =$
- e) List the asymptotes of f. Justify your answers by citing appropriate limits. Explain how you know there are no others.

d)
$$h(x) = \begin{cases} -x^2 + 9, & x \le -2 \\ -2x + 1, & -2 < x < 2 \\ x + 1 & x \ge 2 \end{cases}$$

a)
$$\lim_{x \to -2} f(x) =$$

b)
$$\lim_{x \to 2} f(x) =$$

c)
$$\lim_{x \to 1} f(x) =$$

e)
$$\lim_{x \to 0} \frac{x}{\sqrt{x+1}-1}$$

Comparison Chart of Limits vs. Continuity

	Limits	Continuity
Conceptually	Where is the function headed (y- value) as you get near a certain x- value?	Can you draw it without picking up your pencil?
Graphically	No jumps or infinite squiggles, ignore the point itself	No holes, breaks, or infinite squiggles
Algebraically	1) Limits from both sides have to agree	 Limits from both sides have to agree The y-value of the point has to agree with the limit
Math Notation * And fine print	1) $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$ *f(x) is defined on an interval on both sides of a	1) $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$ 2) $f(a) \text{ is defined and}$ $f(a) = \lim_{x \to a} f(x)$

Squeeze Theorem

Let $f(x) = \sin(x)$. Evaluate the limit:

$$\lim_{x \to \infty} \frac{f(x+1)}{2x^2}$$

Intermediate Value Theorem

If f is a continuous function on the closed interval [a, b], and d is any value between f(a) and f(b), then there is a number c in (a, b) such that f(c) = d.

We will use the IVT to show that the equation

$$2\log(x) = \frac{1}{\pi}$$

has a solution on the interval (1, 10).

a) IVT requires a single function, f. What is your choice for f(x)?

b) **On which interval** do we need to show that *f* is continuous? ______

c) Explain why *f* is continuous on that interval.

d) Evaluate f(1) and f(10).

f(1) = _____

e) IVT requires a number, d. What is your choice for d? d = _____

- f) Fill in the blanks appropriately (according to your answers above): f() < d < f()
- g) Based on your answers above, explain how to use IVT to determine that the equation has a solution in the interval (1, 10).