MSLC Workshop Series Math 1151 – Workshop Indeterminate Forms and L'Hopital's Rule

INDETERMINATE FORMS

What does it mean for a limit's form to be indeterminate?

Which forms are indeterminate?

Circle the forms which are indeterminate.

Circle the forms which are indeterminate.		
$\infty \cdot \infty$	$0\cdot\infty$	# ·∞
$\infty + \infty$	$\infty - \infty$	∞ + #
<u>⊗</u> ⊗	$\frac{0}{\infty}$	# 8
# 0	$\frac{0}{0}$	$\frac{\infty}{0}$
1º	1∞	∞^0
00	0_{∞}	∞^{∞}

Determining the Form Exercises:

Write the form of each of the following limits.

1.
$$\lim_{x\to 0^+} (\sin(x)\cot(x))$$

$$2. \lim_{x \to \infty} \left(\frac{\arctan(x)}{x} \right)$$

3.
$$\lim_{x \to \infty} \left(\left[\frac{1}{x} + 1 \right]^x \right)$$

4.
$$\lim_{x\to\infty}(e^x-x)$$

$$5. \lim_{x \to \infty} \left(\frac{1}{x} + 1\right)^{\frac{1}{x}}$$

6.
$$\lim_{x \to \infty} ([ln(1 + e^{-x})]^x)$$

7.
$$\lim_{x\to\infty} (e^x + x)$$

8.
$$\lim_{x \to \infty} \left(\frac{3x^2 + 5x - 2}{6x^2 + 3x + 1} \right)$$

9.
$$\lim_{x \to \frac{\pi}{2}^{-}} \left(\frac{\cos(x)}{\tan(x)} \right)$$

10.
$$\lim_{x\to\infty} \left(x \ln\left(\frac{1}{x}\right) \right)$$

11.
$$\lim_{x \to \infty} \left(\left[\operatorname{arccot}(x) + \pi \right]^{\frac{1}{x}} \right)$$

12.
$$\lim_{x \to 1} \left(\frac{x^2 - 1}{5 \ln(x)} \right)$$

13.
$$\lim_{x \to 3} \left(\frac{x^2 + 2}{x^2 - x - 6} \right)$$

14.
$$\lim_{x \to 1^{-}} (\cot(\pi x) + \sec(x))$$

L'HOPITAL'S RULE

L'Hopital's rule is a way of dealing with indeterminate forms of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

L'Hopital's Rule: If you want to know $\lim_{x \to a} \frac{f(x)}{g(x)}$

and IF: #1.
$$\underline{\text{both}} \lim_{x \to a} f(x) = 0 \ \underline{\text{and}} \lim_{x \to a} g(x) = 0$$
 - OR -

#2.
$$\underline{\text{both}} \lim_{x \to a} f(x) = \infty \text{ and } \lim_{x \to a} g(x) = \infty$$

THEN:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Notes:

- 1. This is NOT the quotient rule for derivatives
- 2. L'Hopital's Rule give the WRONG answer if #1 or #2 is not satisfied.

Examples:

$$\lim_{x \to 1} \left(\frac{x^2 - 1}{5 \ln x} \right) =$$

$$\lim_{x \to \infty} \left(\frac{3x^2 + 5x - 2}{6x^2 + 3x + 1} \right) =$$

L'Hopital's Rule Exercises:

Evaluate the following limits, using L'Hopital's Rule *if appropriate*

1.
$$\lim_{x \to 0} \frac{e^x - 3x - 1}{5x}$$

$$2. \lim_{x \to 0} \frac{\sin^2 x}{\cos x - 1}$$

$$3. \lim_{x\to 0} \frac{e^x}{x^2}$$

4.
$$\lim_{x\to\infty}\frac{e^x}{x^2}$$

$$5. \lim_{x \to \frac{\pi}{2}} \frac{\tan(x)}{\csc(x)} =$$

FORCING A FRACTION

L'Hopital can also help us with the other indeterminate forms if we can **force a fraction** that yields $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Examples:

1.
$$\lim_{x \to \infty} \left(x \tan \frac{1}{x} \right) =$$

$$2. \lim_{x \to \infty} \left(\left[\frac{1}{x} + 1 \right]^x \right) =$$

$$3. \lim_{x \to \infty} (x - \ln x) =$$

Forcing a Fraction Exercises:

Evaluate the following by applying L'Hopital's Rule *if appropriate*.

1.
$$\lim_{x\to 0^+} x \ln(3x)$$

$$2. \lim_{x \to \infty} e^{-x\sqrt{x}}$$

3.
$$\lim_{x \to \infty} \left(\left[\cos \left(\frac{2}{x} \right) \right]^{x^2} \right) =$$

4.
$$\lim_{x \to 3} \frac{e^x}{x^2 - 9} =$$

5.
$$\lim_{x \to \infty} \left(\csc(x) - \frac{1}{x} \right) =$$

6.
$$\lim_{x \to 0^{-}} \left(\frac{1}{x^2} + \frac{\cos(3x)}{x^3} \right) =$$