MSLC Workshop Series
Math 1151 – Workshop
Indeterminate Forms and L’Hopital’s Rule

INDETERMINATE FORMS

What does it mean for a limit’s form to be indeterminate?

Which forms are indeterminate?
Circle the forms which are indeterminate.

<table>
<thead>
<tr>
<th>$\infty \cdot \infty$</th>
<th>$0 \cdot \infty$</th>
<th>$# \cdot \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\infty + \infty$</td>
<td>$\infty - \infty$</td>
<td>$\infty + #$</td>
</tr>
<tr>
<td>$\frac{\infty}{\infty}$</td>
<td>$\frac{0}{\infty}$</td>
<td>$\frac{#}{\infty}$</td>
</tr>
<tr>
<td>$\frac{#}{0}$</td>
<td>$\frac{0}{0}$</td>
<td>$\frac{\infty}{0}$</td>
</tr>
<tr>
<td>1^0</td>
<td>1^∞</td>
<td>∞^0</td>
</tr>
<tr>
<td>0^0</td>
<td>0^∞</td>
<td>∞^∞</td>
</tr>
</tbody>
</table>
Determining the Form Exercises:
Write the form of each of the following limits.

1. \(\lim_{x \to 0^+} (\sin(x) \cot(x)) \)
2. \(\lim_{x \to \infty} \frac{\arctan(x)}{x} \)

3. \(\lim_{x \to \infty} \left(\left[\frac{1}{x} + 1 \right]^x \right) \)
4. \(\lim_{x \to \infty} (e^x - x) \)

5. \(\lim_{x \to \infty} \left(\frac{1}{x} + 1 \right)^{\frac{1}{x}} \)
6. \(\lim_{x \to \infty} ([\ln(1 + e^{-x})]^x) \)

7. \(\lim_{x \to \infty} (e^x + x) \)
8. \(\lim_{x \to \infty} \left(\frac{3x^2 + 5x - 2}{6x^2 + 3x + 1} \right) \)

9. \(\lim_{x \to \frac{\pi}{2}} \left(\frac{\cos(x)}{\tan(x)} \right) \)
10. \(\lim_{x \to \infty} \left(x \ln \left(\frac{1}{x} \right) \right) \)

11. \(\lim_{x \to \infty} \left(\left[\arccot(x) + \pi \right]^\frac{1}{x} \right) \)
12. \(\lim_{x \to 1} \left(\frac{x^2 - 1}{5 \ln(x)} \right) \)

13. \(\lim_{x \to 3} \left(\frac{x^2 + 2}{x^2 - x - 6} \right) \)
14. \(\lim_{x \to 1^-} (\cot(\pi x) + \sec(x)) \)
L’HÔPITAL’S RULE
L’Hôpital’s rule is a way of dealing with indeterminate forms of the type \(\frac{0}{0} \) or \(\frac{\infty}{\infty} \).

L’Hopital’s Rule: If you want to know \(\lim_{x \to a} \frac{f(x)}{g(x)} \),

and IF: #1. both \(\lim_{x \to a} f(x) = 0 \) and \(\lim_{x \to a} g(x) = 0 \)

- OR -

#2. both \(\lim_{x \to a} f(x) = \infty \) and \(\lim_{x \to a} g(x) = \infty \)

THEN: \(\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \).

Notes:
1. This is NOT the quotient rule for derivatives
2. L’Hopital’s Rule give the WRONG answer if #1 or #2 is not satisfied.

Examples:

\[
\lim_{x \to 1} \left(\frac{x^2 - 1}{5 \ln x} \right) = \\
\lim_{x \to \infty} \left(\frac{3x^2 + 5x - 2}{6x^2 + 3x + 1} \right) =
\]
L’Hopital’s Rule Exercises:
Evaluate the following limits, using L’Hopital’s Rule if appropriate

1. \(\lim_{x \to 0} \frac{e^x - 3x - 1}{5x} \)

2. \(\lim_{x \to 0} \frac{\sin^2 x}{\cos x - 1} \)

3. \(\lim_{x \to 0} \frac{e^x}{x^2} \)

4. \(\lim_{x \to \infty} \frac{e^x}{x^x} \)

5. \(\lim_{x \to \frac{\pi}{2}} \frac{\tan(x)}{\csc(x)} = \)

FORCING A FRACTION

L’Hopital can also help us with the other indeterminate forms if we can **force a fraction** that yields $0 \div 0$ or $\infty \div \infty$.

Examples:

1. \[\lim_{x \to \infty} \left(x \tan \frac{1}{x} \right) = \]
2. \[\lim_{x \to \infty} \left(\left[\frac{1}{x} + 1 \right]^x \right) = \]
3. \[\lim_{x \to \infty} (x - \ln x) = \]
Forcing a Fraction Exercises:
Evaluate the following by applying L’Hopital’s Rule if appropriate.

1. \(\lim_{x \to 0^+} x \ln(3x) \) 2. \(\lim_{x \to \infty} e^{-x\sqrt{x}} \)

3. \(\lim_{x \to \infty} \left(\left[\cos \left(\frac{\pi}{x} \right) \right]^{x^2} \right) = \)

4. \(\lim_{x \to 3} \frac{e^x}{x^2 - 9} = \)

5. \(\lim_{x \to \infty} \left(\csc(x) - \frac{1}{x} \right) = \)

6. \(\lim_{x \to 0^-} \left(\frac{1}{x^2} + \frac{\cos(3x)}{x^4} \right) = \)