Definition of the Derivative:

The derivative of a function f is another function f^{\prime} whose value at any number a is: $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$, provided that this limit exists.

Other Forms of the Definition of the Derivative:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad f^{\prime}(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} \quad f^{\prime}(a)=\lim _{t \rightarrow a} \frac{f(t)-f(a)}{t-a}
$$

Table of Key Derivatives:

$\frac{d}{d x} \sin (x)=\cos (x)$	$\frac{d}{d x} \cos (x)=-\sin (x)$
$\frac{d}{d x} \tan (x)=\sec ^{2}(x)$	$\frac{d}{d x} \cot (x)=-\csc ^{2}(x)$
$\frac{d}{d x} \sec (x)=\sec (x) \tan (x)$	$\frac{d}{d x} \csc (x)=-\csc (x) \cot (x)$
$\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}$	$\frac{d}{d x} \cos ^{-1}(x)=-\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}$	$\frac{d}{d x} \cot ^{-1}(x)=-\frac{1}{1+x^{2}}$
$\frac{d}{d x} \sec ^{-1}(x)=\frac{1}{\|x\| \sqrt{x^{2}-1}}$	$\frac{d}{d x} \csc ^{-1}(x)=-\frac{1}{\|x\| \sqrt{x^{2}-1}}$
$\frac{d}{d x} e^{x}=e^{x}$	$\frac{d}{d x} a^{x}=\ln (a) e^{x}$
$\frac{d}{d x} \ln (x)=\frac{1}{x}$	$\frac{d}{d x} \log _{b}(x)=\frac{1}{\ln (b) x}$

Derivative Rules:

derivative of ANY constant (anything without an x)	$\frac{d}{d x} c=0$
derivative of a constant times a	
function	

Implicit Differentiation

If we want to find $\frac{d y}{d x}$, we think of y as implicitly defined as a function of x.

- When we differentiate x, we get 1 .
- When we differentiate y, we get $\frac{d y}{d x}$ or y^{\prime} (either is fine).
- Then we solve for $\frac{d y}{d x}$.

Logarithmic Differentiation

Used when the function is complicated or for functions with an x in the base and in the exponent.

Option 1: Take the log of both sides, simplify with log properties, differentiate (implicit chain rule on y will always happen on the left side), then solve for y^{\prime}.

$$
\begin{gathered}
y=x^{x} \\
\ln y=\ln x^{x}=x \ln x \\
\frac{\mathrm{~d}}{\mathrm{dx}}(\ln \mathrm{y})=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x} \ln \mathrm{x}) \\
\frac{1}{y} y^{\prime}=1 \cdot \ln x+x \cdot \frac{1}{x}=\ln x+1 \\
y^{\prime}=y(\ln x+1)=x^{x}(\ln x+1)
\end{gathered}
$$

Option 2: Rewrite your expression using $e^{\ln (\text { expression })}$, simplify with log properties, then differentiate (not implicit).

$$
\begin{gathered}
y=x^{x} \\
y=e^{\ln \left(x^{x}\right)} \\
y=e^{x \ln (x)} \\
\frac{d y}{d x}=e^{x \ln (x)} \cdot(x \ln (x))^{\prime} \\
\frac{d y}{d x}=e^{x \ln (x)} \cdot\left(1 \cdot \ln (x)+x \cdot \frac{1}{x}\right) \\
\frac{d y}{d x}=e^{\ln \left(x^{x}\right)} \cdot(\ln (x)+1) \\
\frac{d y}{d x}=x^{x}(\ln (x)+1)
\end{gathered}
$$

Notice that both options yield the same result!

