MSLC Workshop Series
 Math 1151 - Workshop
 The Fundamental Theorem of Calculus and Substitution

First Fundamental Theorem of Calculus

- $\int_{a}^{b} f(t) d t$ calculates the signed area under the curve $y=f(t)$ from a to b.
- Similarly, we can find the area under the curve between a and x (where x is a variable) with the integral $\int_{a}^{x} f(t) d t$.
- This integral can be thought of as a function of x ! Let's call it:

$$
A(x)=\int_{a}^{x} f(t) d t
$$

(This function is called the accumulation function of the original function, $f(x)$.) Assume $a=0$ and $f(x)$ is the function below.

1. Find $A(2)$.
2. Find $A(9)$.
3. Is A increasing or decreasing on the interval $[5,6]$?

The rate of accumulation at $t=x$ is equal to the value of the function being accumulated at $t=x$. This relationship is known as the First Fundamental Theorem of Calculus. That is,

$$
A^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x), \text { where } f(t) \text { is a continuous function on }[a, x] .
$$

$$
A^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x), \text { where } f(t) \text { is a continuous function on }[a, x] .
$$

Examples:

Find $F^{\prime}(x)$.

1. $\mathrm{F}(x)=\int_{2}^{x}\left(t^{2}-\cos t+3\right) d t$
2. $F(x)=\int_{0}^{x^{2}} t \cos (2 t) d t$
3. $F(x)=\int_{x}^{4} \frac{3}{t} d t$
4. $\mathrm{F}(x)=\int_{x}^{x^{3}} \sin ^{2}(t) d t$

Second Fundamental Theorem of Calculus

What if the function we are integrating doesn't lend itself to nice geometry calculation?

- We could use Riemann Sums
- OR -
- We could use the Second Fundamental Theorem, which states

$$
\int_{a}^{b} f(x) d x=F(b)-F(a), \text { where } F(x) \text { is any antiderivative of } f(x)
$$

(This is much more efficient than using Riemann sums, assuming we can find an antiderivative of the function.)

Examples:

1. $\int_{1}^{3}\left(2 x^{2}+x\right) d x$
2. $\int_{0}^{\frac{\pi}{4}} \sec ^{2}(x) d x$

Substitution - Undoing the Chain Rule
Suppose we want to find $\int \sin \left(x^{4}\right) 4 x^{3} d x$. We know how to find $\int \sin (■) \mathrm{d} ■$, so we are going to do a CHANGE OF VARIABLE.

$$
u=x^{4}
$$

But to do this, we also need to change the $d x$ into a $d u$.

$$
\frac{d u}{d x}=
$$

Which gives us a new integral that we know how to solve:

CONVERTING ALL x^{\prime} s to u 's
Most importantly, this change of variable will only work if we change EVERY x so that the ENTIRE integral is in terms of u.

When Substitution Fails:
$\int \sin \left(x^{4}\right) d x$

Back Substitution:

$\int \frac{x}{x+1} d x$

Limits of Integration:

$\int_{1}^{2}(x+3)^{60} d x$

Practice Problems:

1. $\int_{\pi / 4}^{\pi} \sin x \cos x d x$
2. $\int_{0}^{4} \sqrt{2 t+1} d t$
3. $\int_{0}^{4} x^{2} \cos \left(x^{3}-1\right) d x$
4. $\int_{-4}^{4} \sqrt{16-x^{2}} d x$ (Hint: remember integral means area)
5. $\int_{-4}^{4} \frac{2}{1+4 x^{2}} d x$
6. $\int_{-4}^{2} \sin (x+1) d x$
7. $\int_{0}^{1} 5 x^{2} e^{x^{3}} d x$
8. $\int \frac{2 x+1}{x^{2}+4} d x$
