Graph Sketching Summary Sheet

1. **Domain**
 legal x-values

2. **x, y – intercepts**
 - x-int: set \(f(x) = 0 \). Solve for \(x \).
 - y-int: plug in 0 for \(x \)

3. **Symmetry**:
 - Odd: \(f(-x) = -f(x) \), symmetric about the origin
 - Even: \(f(-x) = f(x) \), symmetric about the y-axis
 - Periodic: \(f(x + k) = f(x) \) for all \(x \), period is \(k \)

4. **Asymptotes**:
 - Vertical Asymptotes (forbidden x-values)
 - 0 in the denominator, ln(0), etc.
 - Horizontal Asymptotes:
 \[
 \lim_{{x \to \infty}} f(x) \quad \text{or} \quad \lim_{{x \to -\infty}} f(x)
 \]

5. **Increasing\|decreasing**
 - a) Take \(f'(x) \)
 - b) Find critical values
 \(f'(x) = 0 \) or \(f'(x) \) is undefined
 - c) Draw sign chart
 - \(f'(x) > 0 \Rightarrow f \) is increasing
 - \(f'(x) < 0 \Rightarrow f \) is decreasing

6. **Max/Min**
 Relative Extrema occur if:
 - 1) \(f'(x) \) changes sign at the point AND 2) \(f(x) \) is continuous at the point

7. **Concavity**
 - a) Take \(f''(x) \)
 - b) Find which \(x \)'s make \(f''(x) = 0 \) or \(f''(x) \) undefined
 - c) Draw a sign chart
 - \(f''(x) < 0 \Rightarrow f \) is concave down
 - \(f''(x) > 0 \Rightarrow f \) is concave up

8. **Inflection Points**
 Inflection points occur if:
 - 1) \(f''(x) \) changes sign at the point AND 2) \(f(x) \) is continuous at the point