MSLC Workshop Series

Math 1151 - Workshop 1 Limits and Continuity

Warm-up:
Let $\mathrm{f}(x)=\frac{x^{2}-6 x+8}{x-2}$ and let $\mathrm{g}(x)=\mathrm{x}-4$. Are f and g equivalent functions? Why or why not? Hint: Try factoring the numerator of $f(x)$.

Draw the graphs of $y=f(x)$ and $y=g(x)$.

Limits:

There is a technical definition, but for us, the intuitive definition will do just fine. Here it is:

The limit L is the value the function "gets close to" if we make the x values "get close to" (but not equal to) a. We write $\lim _{x \rightarrow a} f(x)=L$.

Continuity:

Definition: A function $\mathrm{f}(x)$ is continuous at $\mathrm{x}=\mathrm{a}$ if and only if $\lim _{x \rightarrow a} \mathrm{f}(x)=\mathrm{f}(a)$.

This definition actually states three things:
1.
2.
3.

Limits

Continuity:

Part 1: Limits and Continuity given by a Graph

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be given by the graph below. Use the graph to find the following.

$$
\text { f. } \lim _{x \rightarrow-5}(4 f(x))=
$$

1. a. $\mathrm{f}(1)=$
b. $\lim _{x \rightarrow 1} \mathrm{f}(x)=$
c. Is f continuous at $\mathrm{x}=1$?
d. $\lim _{x \rightarrow 1}(f(x)+3 x)=$
2. a. $\lim _{x \rightarrow-2^{-}} \mathrm{f}(x)=$
b. $\lim _{x \rightarrow-2^{+}} \mathrm{f}(x)=$
c. $\lim _{x \rightarrow-2} \mathrm{f}(x)=$
d. Is f continuous at $\mathrm{x}=-2$?
3. a. $\lim _{x \rightarrow-5^{-}} \mathrm{f}(x)=$
b. $\lim _{x \rightarrow-5^{+}} \mathrm{f}(x)=$
c. $\lim _{x \rightarrow-5} \mathrm{f}(x)=$
d. $f(-5)=$
e. Is f continuous at $\mathrm{x}=-5$?
4. a. $\lim _{x \rightarrow 3^{-}} \mathrm{f}(x)=$
b. $\lim _{x \rightarrow 3^{+}} \mathrm{f}(x)=$
c. $\lim _{x \rightarrow 3} f(x)=$
d. $f(3)=$
e. Is f continuous at $\mathrm{x}=3$?
f. $\lim _{x \rightarrow 3} \sin \left(\frac{\pi}{3} f(x)\right)=$
5. a. $\lim _{x \rightarrow 6^{-}} \mathrm{f}(x)=$
b. $\lim _{x \rightarrow 6^{+}} \mathrm{f}(x)=$
c. $\operatorname{limf}_{x \rightarrow 6}(x)=$
d. $\mathrm{f}(6)=$
e. Is f continuous at $x=6$?
f. $\lim _{x \rightarrow \infty} \mathrm{f}(x)=$
g. $\lim _{x \rightarrow-\infty} f(x)=$

Part 2: Limits and Continuity given by an Equation

Hints about finding Limits:

- Plugging in nearby numbers will get you no credit unless the directions specifically say to do so.
- For any function which is CONTINUOUS, you can find the limit just by plugging in the number as long as the answer is defined.
- In particular we know the following functions and all their combinations are continuous wherever they are defined:
\qquad
\qquad
\qquad
\qquad
- Ways you can combine continuous functions to get another continuous function:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- What do you do if the function is undefined? Look at the form of the limit!

zero	$\frac{\text { nonzero number }}{\text { nonzero number }}$	zero
zero		

$\frac{\text { number }}{\text { infinity }} \quad \frac{\text { infinity }}{\text { infinity }}$

Limits Problems:

a) $\mathrm{f}(x)=\frac{1}{x-1}$
a) $\lim _{x \rightarrow 1^{-}} \mathrm{f}(x)=$
b) $\lim _{x \rightarrow 1^{+}} \mathrm{f}(x)=$
c) $\lim _{x \rightarrow 1} \mathrm{f}(x)=$
d) $\lim _{x \rightarrow \infty} \mathrm{f}(x)=$
e) List the asymptotes of f. Justify your answers by citing appropriate limits. Explain how you know there are no others.
b) $\mathrm{f}(x)=\frac{x^{2}-1}{x+1}$
a) $\lim _{x \rightarrow-1^{-}} \mathrm{f}(x)=$
b) $\lim _{x \rightarrow-1^{+}} \mathrm{f}(x)=$
c) $\lim _{x \rightarrow-1} \mathrm{f}(x)=$
d) $\lim _{x \rightarrow \infty} \mathrm{f}(x)=$
c) $\mathrm{h}(x)=\frac{x^{2}-3 x-4}{2 x^{2}-4 x-6}=\frac{(x-4)(x+1)}{2(x+1)(x-3)}$
a) $\lim _{x \rightarrow-1} \mathrm{~h}(x)=$
b) $\lim _{x \rightarrow 3} \mathrm{~h}(x)=$
c) $\lim _{x \rightarrow 4} \mathrm{~h}(x)=$
d) $\lim _{x \rightarrow \infty} \mathrm{~h}(x)=$
e) List the asymptotes of h. Justify your answers by citing appropriate limits. Explain how you know there are no others.
d) $\mathrm{h}(x)=\left\{\begin{array}{cc}-x^{2}+9, & x \leq-2 \\ -2 x+1, & -2<x<2 \\ x+1 & x \geq 2\end{array}\right\}$
a) $\lim _{x \rightarrow-2} \mathrm{~h}(x)=$
b) $\lim _{x \rightarrow 2} \mathrm{~h}(x)=$
c) $\lim _{x \rightarrow 1} \mathrm{~h}(x)=$
e) $\lim _{x \rightarrow 0} \frac{x}{\sqrt{x+1}-1}$

Comparison of Limits vs. Continuity

Limits

Conceptually
Where is the function headed (y -value) as you get near a certain x -value?
Graphically
No jumps or infinite squiggles, ignore the point itself
Algebraically
Limits from both sides have to agree
Math Notation

$$
\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)
$$

$f(x)$ is defined on an interval on both sides of a

Continuity
Conceptually
Can you draw it without picking up your pencil?
Graphically
No holes, breaks or infinite squiggles
Algebraically

1. Limits from both sides have to agree
2. The y-value of the point has to agree with the limit

Math Notation

1. $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$
2. $f(\mathrm{a})$ is defined
3. $\mathrm{f}(a)=\lim _{x \rightarrow a} \mathrm{f}(x)$

Squeeze Theorem

Let $\mathrm{f} \vdash(x-1)=\sin (\mathrm{x}))$. Evaluate the limit:

$$
\lim _{x \rightarrow \infty} \frac{f(x+1)}{2 x^{2}}
$$

Intermediate Value Theorem

If f is a continuous function on the closed interval $[a, b]$, and d is any value between $f(a)$ and $f(b)$, then there is a number c in (a, b) such that $f(c)=d$.

We will use the IVT to show that the equation

$$
2 \log (x)=\frac{1}{\pi}
$$

has a solution on the interval $(1,10)$.
a) IVT requires a single function, f . What is your choice for $\mathrm{f}(x)$? \qquad
b) On which interval do we need to show that f is continuous? \qquad
c) Explain why f is continuous on that interval.
d) Evaluate $\mathrm{f}(1)$ and $\mathrm{f}(10)$.

$$
\begin{aligned}
& \mathrm{f}(1)= \\
& \mathrm{f}(10)=
\end{aligned}
$$

e) IVT requires a number, d. What is your choice for d?

$$
\mathrm{d}=
$$

f) Fill in the blanks appropriately (according to your answers above): $f(\quad)<d<f(\quad)$
g) Based on your answers above, explain how to use IVT to determine that the equation has a solution in the interval $(1,10)$.

