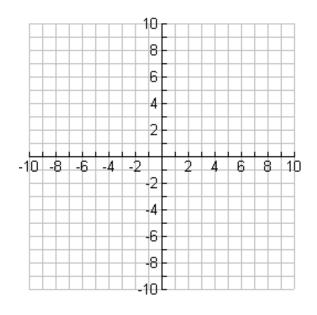
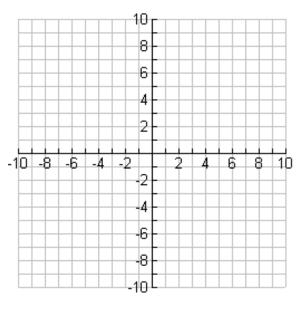
MSLC Workshop Series Math 1151 Limits and Continuity

Warm-up: Let $f(x) = \frac{x^2 - 6x + 8}{x - 2}$ and let g(x) = x - 4. Are f and g equivalent functions? Why or why not?

Draw the graphs of y = f(x) and y = g(x).



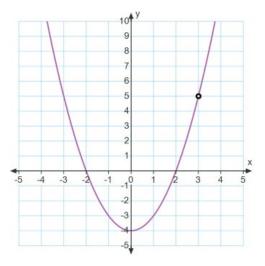


Limits:

There is a technical definition, but for us, the intuitive definition will do just fine. Here it is:

The limit L is the value the function "gets close to" if we make the x values "get close to" (but not equal to)

Quick Check: Find the value of the $\lim_{x\to 3} f(x)$ from the graph.



Continuity:

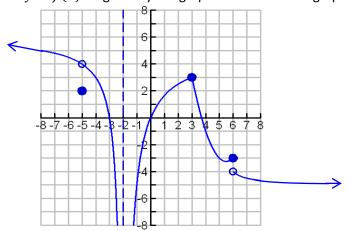
Def A function f(x) is continuous at x = a if and only if $\lim_{x \to a} f(x) = f(a)$.

This definition actually states three things:

- 1.
- 2.
- 3.

Part 1: Limits and Continuity given by a Graph

Let y = f(x) be given by the graph below. Use the graph to find the following.



1. a.
$$f(1) =$$

$$b. \lim_{x \to 1} f(x) =$$

c. Is
$$f$$
 continuous at $x = 1$?

3. a.
$$\lim_{x \to -5^{-}} f(x) =$$

$$b. \lim_{x \to -5^+} f(x) =$$

$$c. \lim_{x \to -5} f(x) =$$

d.
$$f(-5) =$$

e. Is
$$f$$
 continuous at $x = -5$?

5. a.
$$\lim_{x \to 6^{-}} f(x) =$$

$$b. \lim_{x \to 6^+} f(x) =$$

c.
$$\lim_{x\to 6} f(x) =$$

d.
$$f(6) =$$

e. Is
$$f$$
 continuous at $x = 6$?

2. a.
$$\lim_{x \to -2^{-}} f(x) =$$

$$b. \lim_{x \to -2^+} f(x) =$$

c.
$$\lim_{x \to -2} f(x) =$$

d. Is f continuous at x = -2?

4. a.
$$\lim_{x \to 3^{-}} f(x) =$$

$$b. \lim_{x \to 3^+} f(x) =$$

$$c. \lim_{x \to 3} f(x) =$$

d.
$$f(3) =$$

e. Is f continuous at x = 3?

Part 2: Limits, Continuity, and Differentiability given by an Equation

Hints about finding Limits:

- Plugging in nearby numbers will get you no credit unless the directions specifically say to do so.
- For any function which is CONTINUOUS, you can find the limit just by plugging in the number as long as the answer is defined.

0	In particular we know the following functions and all their combinations are continuous wherever they are defined:					
						_
0	Ways you ca	an combine cont	tinuous func	tions to get a	nother continuous	s function:
• What o	do you do if tl	ne function is un	ndefined?			
	zero		nonzero			zero
nonzero	number		zer	0		zero
		number infinity			infinity infinity	

Limit Examples:

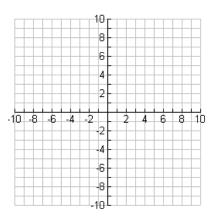
1.
$$\lim_{x \to 4} \frac{3 - 2x}{(x - 4)(x + 2)}$$

2.
$$\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

$$3. \quad \lim_{h \to 0} \frac{\sqrt{1+h}-1}{h}$$

4.
$$f(x) = \begin{cases} 4 - x^2 & x \le 2\\ x - 1 & x > 2 \end{cases}$$

- a. Find $\lim_{x\to 2^-} f(x)$ and $\lim_{x\to 2^+} f(x)$. b. Does $\lim_{x\to 2} f(x)$ exist?
- c. Sketch a graph of f(x).



5. Challenge Problem! $\lim_{x \to -\infty} \frac{3x^3}{\sqrt{9x^6+x}}$

Continuity Examples: Determine if the following functions are continuous at the given x-value.

1.
$$f(x) = \begin{cases} 3x^2 + 7 & x < 2 \\ \sin(x) & x > 2 \end{cases}$$
, x=2

2.
$$g(x) = \begin{cases} \frac{x^2 - 2x - 8}{x - 4} & x \neq 4 \\ 7 & x = 4 \end{cases}$$
, x=4

Comparison of Limits vs. Continuity

Limits

Conceptually

Where is the function headed (y-value) as you get near a certain x-value?

Graphically

No jumps or infinite squiggles, ignore the point itself

Algebraically

Limits from both sides have to agree

Math Notation

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x)$$

f(x) is defined on an interval on both sides of a

Continuity

Conceptually

Can you draw it without picking up your pencil?

Graphically

No holes, breaks or infinite squiggles

Algebraically

- 1. Limits from both sides have to agree
- 2. The y-value of the point has to agree with the limit

Math Notation

1.
$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x)$$

2.
$$f(a)$$
 is defined

$$3. \quad f(a) = \lim_{x \to a} f(x)$$