MSLC Workshop Series Math 1151 Limits and Continuity

Warm-up: Let $f(x)=\frac{x^{2}-6 x+8}{x-2}$ and let $g(x)=x-4$. Are f and g equivalent functions? Why or why not?

Draw the graphs of $y=f(x)$ and $y=g(x)$.

Limits:

There is a technical definition, but for us, the intuitive definition will do just fine. Here it is:
The limit L is the value the function "gets close to" if we make the x values "get close to" (but not equal to)

Quick Check: Find the value of the $\lim _{x \rightarrow 3} f(x)$ from the graph.

Continuity:

Def A function $f(x)$ is continuous at $x=a$ if and only if $\lim _{x \rightarrow a} f(x)=f(a)$.

This definition actually states three things:
1.
2.
3.

Part 1: Limits and Continuity given by a Graph
Let $y=f(x)$ be given by the graph below. Use the graph to find the following.

1. a. $f(1)=$
b. $\lim _{x \rightarrow 1} f(x)=$
c. Is f continuous at $x=1$?
2. a. $\lim _{x \rightarrow-2^{-}} f(x)=$
b. $\lim _{x \rightarrow-2^{+}} f(x)=$
c. $\lim _{x \rightarrow-2} f(x)=$
d. Is f continuous at $x=-2$?
3. a. $\lim _{x \rightarrow-5^{-}} f(x)=$
b. $\lim _{x \rightarrow-5^{+}} f(x)=$
4. a. $\lim _{x \rightarrow 3^{-}} f(x)=$
b. $\lim _{x \rightarrow 3^{+}} f(x)=$
c. $\lim _{x \rightarrow-5} f(x)=$
c. $\lim _{x \rightarrow 3} f(x)=$
d. $f(-5)=$
e. Is f continuous at $x=-5$?
d. $f(3)=$
e. Is f continuous at $x=3$?
5. a. $\lim _{x \rightarrow 6^{-}} f(x)=$
b. $\lim _{x \rightarrow 6^{+}} f(x)=$
c. $\lim _{x \rightarrow 6} f(x)=$
d. $f(6)=$
e. Is f continuous at $x=6$?

Part 2: Limits, Continuity, and Differentiability given by an Equation

Hints about finding Limits:

- Plugging in nearby numbers will get you no credit unless the directions specifically say to do so.
- For any function which is CONTINUOUS, you can find the limit just by plugging in the number as long as the answer is defined.
- In particular we know the following functions and all their combinations are continuous wherever they are defined:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Ways you can combine continuous functions to get another continuous function:
\qquad
\qquad
\qquad
- What do you do if the function is undefined?
zero
nonzero number
nonzero number
zero
zero
zero
$\frac{\text { number }}{\text { infinity }}$
infinity
infinity
$\overline{\text { infinity }}$

Limit Examples:

1. $\lim _{x \rightarrow 4} \frac{3-2 x}{(x-4)(x+2)}$
2. $\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x^{2}-3 x-4}$
3. $\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}$
4. $f(x)=\left\{\begin{array}{cc}4-x^{2} & x \leq 2 \\ x-1 & x>2\end{array}\right.$
a. Find $\lim _{x \rightarrow 2^{-}} f(x)$ and $\lim _{x \rightarrow 2^{+}} f(x)$.
b. Does $\lim _{x \rightarrow 2} f(x)$ exist?
c. Sketch a graph of $f(x)$.

5. Challenge Problem! $\lim _{x \rightarrow-\infty} \frac{3 x^{3}}{\sqrt{9 x^{6}+x}}$

Continuity Examples: Determine if the following functions are continuous at the given x-value.

1. $f(x)=\left\{\begin{array}{cc}3 x^{2}+7 & x<2 \\ \sin (x) & x>2\end{array}, \mathrm{x}=2\right.$
2. $g(x)=\left\{\begin{array}{cc}\frac{x^{2}-2 x-8}{x-4} & x \neq 4 \\ 7 & x=4\end{array} \quad, \mathrm{x}=4\right.$

Comparison of Limits vs. Continuity

Limits

Conceptually
Where is the function headed (y -value) as you get near a certain x -value?
Graphically
No jumps or infinite squiggles, ignore the point itself
Algebraically
Limits from both sides have to agree
Math Notation

$$
\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)
$$

$f(x)$ is defined on an interval on both sides of a

Continuity

Conceptually
Can you draw it without picking up your pencil?
Graphically
No holes, breaks or infinite squiggles
Algebraically

1. Limits from both sides have to agree
2. The y-value of the point has to agree with the limit

Math Notation

1. $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$
2. $f(\mathrm{a})$ is defined
3. $f(a)=\lim _{x \rightarrow a} f(x)$
