Math 1151 Workshop 0: Refresh and Tips

Mathematics and Statistics Learning Center (mslc.osu.edu/tutoring)
Problem 1: Try on your own, write down any questions, then look for answers

Consider the following graph of a function f :

a) What is the domain of the function f ?
b) What is the range of the function f ?
c) What is the y-intercept of the graph?
d) What is $f(-1)$?
e) Solve the equation $f(x)=2$.
f) Is the function f odd, even, or neither?
g) List the intervals where f is increasing.
h) List the intervals where f is decreasing.
i) Is the function f invertible?
j) Give an interval where f is one-to-one.

Problem 2: Reflect on the problem after finishing: why did I ask it? Draw a graph below of a function f with the following properties.
a) The domain of f is $[-4,3)$.
b) The range of f is $[-3,3)$.
c) The y-intercept of the graph of f is $(0,0)$.
d) $f(-1)=2$
e) f is increasing on the interval $(-3,-2)$.
f) f is decreasing on the interval $(0,1)$.
g) f is one-to-one on the interval $(2,3)$.

Problem 3: Use previous parts of the problem to help
Determine the domain of the function f. Recall that an expression is undefined if its denominator is 0 , it has a negative underneath an even root, or the argument of a logarithm is non-positive.
a) $f(x)=\frac{x}{x+2}$
b) $f(x)=\sqrt{1-x}$
c) $\mathrm{f}(x)=\log (7 x)$
d) $f(x)=\frac{2}{x^{2}-4}$
e) $\mathrm{f}(x)=\frac{\sqrt{1-x}}{x+2}$
f) $f(x)=\frac{x}{\sqrt{1-x}}$
g) $\mathrm{f}(x)=\frac{1}{\log (7 x)}$

Problem 4: Use Desmos to find the answers and then work in groups to justify your answers without graphing
Evaluate the following:
a) $\ln \left(e^{-5}\right)$
b) $e^{\ln (-5)}$
c) $\sqrt{4^{2}}$
d) $\sqrt{(-4)^{2}}$

Are any of the results surprising? Can you explain them? Explanation is a key skill we want you to learn in Calc 1.

Problem 5: Explain what you found to a partner and come to an agreement Recall the following logarithm rules:

1. $\log _{\mathrm{b}}(\mathrm{xy})=\log _{\mathrm{b}}(\mathrm{x})+\log _{\mathrm{b}}(\mathrm{y})$
2. $\log _{b}(x / y)=\log _{b}(x)-\log _{b}(y)$
3. $\log _{b}\left(x^{p}\right)=\mathrm{p} \log _{b}(x)$

Combine the following logarithms into one logarithm with coefficient 1.

$$
\log (x)-\frac{1}{2} \log (y)+3 \log (z)
$$

Expand the following logarithm as much as possible. Try to have the inputs to the logarithms be as simple as possible.

$$
\log \left(\frac{x^{2} \sqrt{y}}{z^{3}}\right)
$$

