Integral Calculus Formula Sheet

Derivative Rules:

<table>
<thead>
<tr>
<th>d/dx(c)</th>
<th>d/dx(x^n)</th>
<th>d/dx(sinx)</th>
<th>d/dx(cosx)</th>
<th>d/dx(secx)</th>
<th>d/dx(cscx)</th>
<th>d/dx(tanx)</th>
<th>d/dx(cotx)</th>
<th>d/dx(ax^n)</th>
<th>d/dx(e^x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>nx^n-1</td>
<td>cos x</td>
<td>-sin x</td>
<td>sec x tan x</td>
<td>-csc x cot x</td>
<td>sec^2 x</td>
<td>-csc^2 x</td>
<td>a^n x^n</td>
<td>e^x</td>
</tr>
</tbody>
</table>

Integration Rules:

\[
\int k \, f(u) \, du = k \int f(u) \, du \\
\int_a^b f(x) \, dx = 0 \\
\int_a^b f(x) \, dx = -\int_a^b f(x) \, dx \\
\int_a^c f(x) \, dx = \int_a^b f(x) \, dx + \int_b^c f(x) \, dx \\
\int_{-a}^a f(x) \, dx = 2 \int_0^a f(x) \, dx \quad \text{if } f(x) \text{ is even} \\
\int_{-a}^a f(x) \, dx = 0 \quad \text{if } f(x) \text{ is odd} \\
\int_a^b g(f(x)) f'(x) \, dx = \left[g(u) \right]_{f(a)}^{f(b)} \\
\int u \, dv = uv - \int v \, du
\]

Properties of Integrals:

\[
\int [f(u) \pm g(u)] \, du = \int f(u) \, du \pm \int g(u) \, du \\
\int_a^b f(x) \, dx = -\int_a^b f(x) \, dx \\
\text{fave} = \frac{1}{b-a} \int_a^b f(x) \, dx \\
\text{If } f(x) \text{ is even, } \int_{-a}^a f(x) \, dx = 2 \int_0^a f(x) \, dx \\
\text{If } f(x) \text{ is odd, } \int_{-a}^a f(x) \, dx = 0
\]
Fundamental Theorem of Calculus:

\[
F'(x) = \frac{d}{dx} \int_a^x f(t) \, dt = f(x) \text{ where } f(t) \text{ is a continuous function on } [a, x].
\]

\[
\int_a^b f(x) \, dx = F(b) - F(a), \text{ where } F(x) \text{ is any antiderivative of } f(x).
\]

Riemann Sums:

\[
\sum_{i=1}^{n} \left(\begin{array}{c}
\text{height of } i\text{th rectangle}) \\
\text{· (width of } i\text{th rectangle)}
\end{array} \right) = \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(a + i \Delta x) \Delta x
\]

\[
\Delta x = \frac{b - a}{n}
\]

\[
\sum_{i=1}^{n} a_i = c \sum_{i=1}^{n} a_i
\]

\[
\sum_{i=1}^{n} b_i = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i
\]

\[
\sum_{i=1}^{n} 1 = n
\]

\[
\sum_{i=1}^{n} \frac{i}{1} = \frac{n(n + 1)}{2}
\]

\[
\sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6}
\]

\[
\sum_{i=1}^{n} i^3 = \left[\frac{n(n + 1)}{2} \right]^2
\]

Net Change:

Displacement: \(\int_a^b v(x) \, dx \)

Distance Traveled: \(\int_a^b |v(x)| \, dx \)

\[
s(t) = s(0) + \int_0^t v(x) \, dx
\]

\[
Q(t) = Q(0) + \int_0^t Q'(x) \, dx
\]

Trig Formulas:

\[
sin^2(x) = \frac{1}{2} (1 - \cos(2x))
\]

\[
tan x = \frac{\sin x}{\cos x}
\]

\[
sec x = \frac{1}{\cos x}
\]

\[
\cos(-x) = \cos(x)
\]

\[
\sin(-x) = -\sin(x)
\]

\[
tan^2(x) + 1 = sec^2(x)
\]

\[
cos^2(x) = \frac{1}{2} (1 + \cos(2x))
\]

\[
cot x = \frac{\cos x}{\sin x}
\]

\[
csc x = \frac{1}{\sin x}
\]

\[
\sin(x) + \cos^2(x) = 1
\]

\[
\cos^2(x) + \sin^2(x) = 1
\]

\[
\tan^2(x) + 1 = \sec^2(x)
\]

Geometry Formulas:

<table>
<thead>
<tr>
<th>Area of a Square:</th>
<th>Area of a Triangle:</th>
<th>Area of an Equilateral Triangle:</th>
<th>Area of a Circle:</th>
<th>Area of a Rectangle:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = s^2)</td>
<td>(A = \frac{1}{2} bh)</td>
<td>(A = \frac{\sqrt{3}}{4} s^2)</td>
<td>(A = \pi r^2)</td>
<td>(A = bh)</td>
</tr>
</tbody>
</table>
Areas and Volumes:

Area in terms of x (vertical rectangles):

$$
\int_a^b (\text{top} - \text{bottom})dx
$$

Area in terms of y (horizontal rectangles):

$$
\int_c^d (\text{right} - \text{left})dy
$$

General Volumes by Slicing:

- **Given:** Base and shape of Cross-sections
- **Formula:**
 - For volumes of revolution laying on the axis with slices perpendicular to the axis
 - If slices are vertical:
 $$
 V = \int_a^b \pi[R(x)]^2 dx
 $$
 - If slices are horizontal:
 $$
 V = \int_c^d \pi[R(y)]^2 dy
 $$

Disk Method:

- For volumes of revolution laying on the axis with slices perpendicular to the axis
- If slices are vertical:
 $$
 V = \int_a^b \pi[R(x)]^2 dx
 $$
- If slices are horizontal:
 $$
 V = \int_c^d \pi[R(y)]^2 dy
 $$

Washer Method:

- For volumes of revolution not laying on the axis with slices perpendicular to the axis
- If slices are vertical:
 $$
 V = \int_a^b \pi[R(x)]^2 - \pi[r(x)]^2 dx
 $$
- If slices are horizontal:
 $$
 V = \int_c^d \pi[R(y)]^2 - \pi[r(y)]^2 dy
 $$

Shell Method:

- For volumes of revolution with slices parallel to the axis
- If slices are vertical:
 $$
 V = \int_a^b 2\pi rh dx
 $$
- If slices are horizontal:
 $$
 V = \int_c^d 2\pi rh dy
 $$

Physical Applications:

<table>
<thead>
<tr>
<th>Physics Formulas</th>
<th>Associated Calculus Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass:</td>
<td>Mass of a one-dimensional object with variable linear density:</td>
</tr>
<tr>
<td>Mass = Density * Volume (for 3-D objects)</td>
<td>Mass = \int_a^b (linear density) \frac{dx}{distance} = \int_a^b \rho(x)dx</td>
</tr>
<tr>
<td>Mass = Density * Area (for 2-D objects)</td>
<td></td>
</tr>
<tr>
<td>Mass = Density * Length (for 1-D objects)</td>
<td></td>
</tr>
<tr>
<td>Work:</td>
<td>Work to stretch or compress a spring (force varies):</td>
</tr>
<tr>
<td>Work = Force * Distance</td>
<td>Work = \int_a^b (force)dx = \int_a^b F(x)dx = \int_a^b kx \frac{dx}{distance}</td>
</tr>
<tr>
<td>Work = Mass * Gravity * Distance</td>
<td></td>
</tr>
<tr>
<td>Work = Volume * Density * Gravity * Distance</td>
<td></td>
</tr>
<tr>
<td>Force/Pressure:</td>
<td>Force of water pressure on a vertical surface:</td>
</tr>
<tr>
<td>Force = Pressure * Area</td>
<td>Force = \int_c^d (gravity)(density)(depth) \frac{dy}{area}</td>
</tr>
<tr>
<td>Pressure = Density * Gravity * Depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Force = \int_c^d 9.8 \rho \ast (a - y) \ast w(y)dy (in metric)</td>
</tr>
</tbody>
</table>
Integration by Parts:

Knowing which function to call \(u \) and which to call \(dv \) takes some practice. Here is a general guide:

\[
\begin{align*}
\text{u} & \quad \text{Inverse Trig Function} & (\sin^{-1}x, \arccos x, \text{etc}) \\
\text{Logarithmic Functions} & (\log 3x, \ln(x+1), \text{etc}) \\
\text{Algebraic Functions} & (x^3, x + 5, 1/x, \text{etc}) \\
\text{Trig Functions} & (\sin(5x), \tan(x), \text{etc}) \\
\text{Exponential Functions} & (e^{3x}, 5^{3x}, \text{etc})
\end{align*}
\]

Functions that appear at the top of the list are more likely to be \(u \), functions at the bottom of the list are more likely to be \(dv \).

Trig Integrals:

<table>
<thead>
<tr>
<th>Integrals involving (\sin(x)) and (\cos(x)):</th>
<th>Integrals involving (\sec(x)) and (\tan(x)):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. If the power of the sine is odd and positive:</td>
<td>1. If the power of (\sec(x)) is even and positive:</td>
</tr>
<tr>
<td>\textbf{Goal:} (u = \cos x)</td>
<td>\textbf{Goal:} (u = \tan x)</td>
</tr>
<tr>
<td>i. Save a (du = \sin(x)dx)</td>
<td>i. Save a (du = \sec^2(x)dx)</td>
</tr>
<tr>
<td>ii. Convert the remaining factors to (\cos(x))</td>
<td>ii. Convert the remaining factors to (\tan(x))</td>
</tr>
<tr>
<td>(using (\sin^2 x = 1 - \cos^2 x).)</td>
<td>(using (\sec^2 x = 1 + \tan^2 x).)</td>
</tr>
<tr>
<td>2. If the power of the cosine is odd and positive:</td>
<td>2. If the power of (\tan(x)) is odd and positive:</td>
</tr>
<tr>
<td>\textbf{Goal:} (u = \sin x)</td>
<td>\textbf{Goal:} (u = \sec(x))</td>
</tr>
<tr>
<td>i. Save a (du = \cos(x)dx)</td>
<td>i. Save a (du = \sec(x) \tan(x)dx)</td>
</tr>
<tr>
<td>ii. Convert the remaining factors to (\sin(x))</td>
<td>ii. Convert the remaining factors to (\sec(x))</td>
</tr>
<tr>
<td>(using (\cos^2 x = 1 - \sin^2 x).)</td>
<td>(using (\sec^2(x) - 1 = \tan^2(x)).)</td>
</tr>
<tr>
<td>3. If both (\sin(x)) and (\cos(x)) have even powers:</td>
<td></td>
</tr>
<tr>
<td>Use the half angle identities:</td>
<td>• If there are no sec(x) factors and the power of</td>
</tr>
<tr>
<td>i. (\sin^2(x) = \frac{1}{2}(1 - \cos(2x)))</td>
<td>(\tan(x)) is even and positive, use (\sec^2(x) - 1 =</td>
</tr>
<tr>
<td>ii. (\cos^2(x) = \frac{1}{2}(1 + \cos(2x)))</td>
<td>(\tan^2(x)) to convert one (\tan^2(x)) to (\sec^2(x))</td>
</tr>
<tr>
<td>\textit{If nothing else works, convert everything to sines}</td>
<td>• Rules for sec(x) and tan(x) also work for csc(x) and</td>
</tr>
<tr>
<td>and cosines.</td>
<td>(\cot(x)) with appropriate negative signs</td>
</tr>
</tbody>
</table>

Trig Substitution:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Substitution</th>
<th>Domain</th>
<th>Simplification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{a^2 - u^2})</td>
<td>(u = a \sin \theta)</td>
<td>(- \frac{\pi}{2} \leq \theta \leq \frac{\pi}{2})</td>
<td>(a^2 - u^2 = a \cos \theta)</td>
</tr>
<tr>
<td>(\sqrt{a^2 + u^2})</td>
<td>(u = a \tan \theta)</td>
<td>(- \frac{\pi}{2} < \theta < \frac{\pi}{2})</td>
<td>(a^2 + u^2 = a \sec \theta)</td>
</tr>
<tr>
<td>(\sqrt{u^2 - a^2})</td>
<td>(u = a \sec \theta)</td>
<td>(0 \leq \theta \leq \pi, \theta \neq \frac{\pi}{2})</td>
<td>(u^2 - a^2 = a \tan \theta)</td>
</tr>
</tbody>
</table>

Partial Fractions:

<table>
<thead>
<tr>
<th>Linear factors:</th>
<th>Irreducible quadratic factors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{P(x)}{(x - r_1)^m} = \frac{A}{(x - r_1)} + \frac{B}{(x - r_1)^2} + \ldots + \frac{Y}{(x - r_1)^{m-1}})</td>
<td>(\frac{P(x)}{(x^2 + r_1)^m} = \frac{Ax + B}{(x^2 + r_1)} + \frac{Cx + D}{(x^2 + r_1)^2} + \ldots + \frac{Wx + X}{(x^2 + r_1)^{m-1}})</td>
</tr>
<tr>
<td>If the fraction has multiple factors in the denominator, we just</td>
<td>If the fraction has multiple factors in the denominator, we just</td>
</tr>
<tr>
<td>add the decompositions.</td>
<td>add the decompositions.</td>
</tr>
</tbody>
</table>