Definition of the Derivative:

The derivative of a function \(f \) is another function \(f' \) whose value at any number \(a \) is:

\[
 f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}, \quad \text{provided that this limit exists.}
\]

Other Forms of the Definition of the Derivative:

\[
 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \quad f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t-x} \quad f'(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t-a}
\]

Table of Key Derivatives:

<table>
<thead>
<tr>
<th>Category</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponent and Log functions</td>
<td>(\frac{d}{dx} e^x = e^x) \quad (\frac{d}{dx} a^x = a^x \ln a) \quad (\frac{d}{dx} \ln x = \frac{1}{x})</td>
</tr>
<tr>
<td>Trigonometric functions</td>
<td>(\frac{d}{dx} \sin x = \cos x) \quad (\frac{d}{dx} \cos x = -\sin x) \quad (\frac{d}{dx} \tan x = \sec^2 x) \quad (\frac{d}{dx} \csc x = -\cot x \csc x) \quad (\frac{d}{dx} \sec x = \sec x \tan x) \quad (\frac{d}{dx} \cot x = -\csc^2 x)</td>
</tr>
<tr>
<td>Inverse Trig functions</td>
<td>(\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1-x^2}}) \quad (\frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1-x^2}}) \quad (\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2})</td>
</tr>
</tbody>
</table>

Derivative Rules

- \(\frac{d}{dx} c = 0 \) \quad derivative of ANY constant (anything without an x)
- \(\frac{d}{dx} (c \cdot f) = c \cdot f' \) \quad derivative of a constant times a function
- \(\frac{d}{dx} (x^n) = nx^{n-1} \) \quad the Power Rule
- \((f \pm g)' = f' \pm g' \) \quad sum or difference of functions
- \((f \cdot g)' = f' \cdot g + f \cdot g' \) \quad the Product Rule
- \(\left(\frac{f}{g} \right)' = \frac{f' \cdot g - f \cdot g'}{g^2} \) \quad the Quotient Rule
- \(\left[f(g(x)) \right]' = f'(g(x)) \cdot g'(x) \) \quad the Chain Rule

Implicit Differentiation

If we want to find \(\frac{dy}{dx} \), we think of \(y \) as implicitly defined as a function of \(x \).

- When we differentiate \(x \), we get 1.
- When we differentiate \(y \), we get \(\frac{dy}{dx} \) or \(y' \) (either is fine).
- Then we solve for \(\frac{dy}{dx} \).

Logarithmic Differentiation

Used when the function is complicated or for functions with an \(x \) in base and in the exponent.

Option 1: Take the log of both sides, simplify with log properties, differentiate (implicit chain rule on \(y \) will always happen on the left side), then solve for \(y' \).

Ex. \(y = x^x \Rightarrow \ln y = \ln x^x = x \ln x \Rightarrow \frac{d}{dx} (\ln y) = \frac{d}{dx} (x \ln x) \Rightarrow \)

\[
\frac{1}{y} \cdot y' = 1 \cdot \ln x + x \cdot \frac{1}{x} \Rightarrow \ln x + 1 \Rightarrow y' = y(\ln x + 1) = x^x (\ln x + 1)
\]

Option 2: Take \(e^{\ln(your\ equation)} \), simplify with log properties, differentiate (not implicit).

Ex. \(y = x^x \Rightarrow y = e^{\ln x^x} = e^{\ln x} \Rightarrow \frac{dy}{dx} = \frac{d}{dx} (e^{\ln x}) \Rightarrow y' = e^{\ln x} (1 \ln x + x \cdot \frac{1}{x}) = e^{\ln x} (\ln x + 1)
\]