Solve
\[x = 2x
\]
\[x = 2x - 6 - (-x) \]
\[x = 3x - 6 \]
\[x - 3x = 3x - 6 - 3x \]
\[-2x = -6 \]
\[\frac{-2x}{-2} = \frac{-6}{-2} \]
\[x = 3 \]

Solve
\[\frac{3}{4} (4x - 3) = 2 \left[x \circ (4x - 3) \right] \]
\[\frac{3}{4} (4x - 3) = 2 [\frac{x}{4} - 4x + 3] \]
\[\frac{6x - 9}{4} = -6x + 6 \]
\[6x - \frac{9}{2} + 6x = -6x + 6 + 6x \]
\[12x - \frac{9}{2} = 6 \]
\[12x - \frac{9}{2} + \frac{9}{2} = 6 + \frac{9}{2} \]
\[12x = \frac{21}{2} \]
\[x = \frac{21}{24} or \boxed{x = \frac{7}{8}} \]

Solve
\[6y = -\frac{3}{5} \]
\[7(\frac{3}{5}) = 7(-\frac{3}{5}) \]
\[6y = -\frac{21}{5} \]
\[y = \frac{-21}{5} \times \frac{1}{6} \]
\[y = \frac{-21}{30} \]
\[y = -\frac{7}{10} \] or \(y = \boxed{-\frac{7}{10}} \)
Solve \[1.4(.2x + 1.3) = 0.5(1x + 4.56) \]
\[.28x + 1.82 = .05x + 2.28 \]
\[.23x + 1.82 = 2.28 \]
\[.23x = .46 \]
\[x = 2 \]

Solve \[S = P(1 + rt) \] for \(t \).

\[S = P + Prt \]
\[S - P = Prt \]
\[\frac{S - P}{Pr} = t \]

Solve \[a(x^2 - 9x + 4) = 0 \]
\[(2x - 1)(x - 4) = 0 \]
\[2x - 1 = 0 \text{ or } x - 4 = 0 \]
\[2x = 1 \]
\[x = \frac{1}{2} \]

Either \(x = \frac{1}{2} \) or \(x = 4 \)

Solve \[(10 - a)x(5-x) = 50 \]

\[10(5) + 10(-x) + (-2x)(5) + (-2x)(-x) = 50 \]
\[50 - 10x - 10x + 2x^2 = 50 \]
\[2x^2 - 20x + 50 = 0 \]
\[x(-20 + 2x) = 0 \]
\[x = 0 \text{ or } -20 + 2x = 0 \]

Either \(x = 0 \) or \(x = 10 \)

\[x = 10 \]
Suppose the weekly revenue, \(r \), for a company is given by:
\[
r = -2p^2 + 400p
\]
where \(p \) is the price. What is the price if the revenue is $18,750?

\[
18750 = -2p^2 + 400p
\]

Use quadratic formula:
\[
p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Here \(a = 2 \)
\(b = -400 \)
\(c = 18750 \)

\[
p = \frac{-(-400) \pm \sqrt{(-400)^2 - 4(2)(18750)}}{2(2)}
\]

\[
p = \frac{400 \pm \sqrt{160000 - 150000}}{4}
\]

\[
p = \frac{400 \pm \sqrt{10000}}{4}
\]

\[
p = \frac{400 \pm 100}{4}
\]

\[
p = \frac{400 + 100}{4} \text{ or } \frac{400 - 100}{4}
\]

\[
p = \frac{500}{4} \text{ or } \frac{300}{4}
\]

\[
p = 125 \text{ or } 75.
\]

The price is either $125 or $75.
Solve \(3(4x - 1) \geq 2(x + 4)\)
\[12x - 3 \geq 2x + 8\]
\[10x \geq 11\]
\[x \geq \frac{11}{10}\]

Solve \(\frac{t - 1}{4} + 3 > \frac{t}{3}\)
\[4\left(\frac{t - 1}{4} + 3\right) > 4\left(\frac{t}{3}\right)\]
\[t - 1 + 12 > \frac{4t}{3}\]
\[3(t + 11) > 3\left(\frac{4t}{3}\right)\]
\[3t + 33 > 4t\]
\[-t + 33 > 0\]
\[-t > -33\]
\[t < 33\]

\[\text{MUST change the sign if you multiply or divide by a negative!}\]

Solve \(3(3 - 2x) \geq 4(1 - 3x)\)
\[9 - 6x \geq 4 - 12x\]
\[9 + 6x \geq 4\]
\[6x \geq 3.1\]
\[x \geq \frac{3.1}{6}\]
\[x \geq 0.5167\]
A manufacturer has 4000 units and is selling it at $10 per unit. Next month, the price will increase by $2 per unit. The manufacturer wants the total revenue from the sale of all 4000 units to be no less than $45,000. What is the maximum number of units that can be sold this month?

Let \(y \) be the number of units sold this month.

\[\text{We will have } 4000 - y \text{ to sell next month.} \]

\[
\text{Total Revenue} = \text{Revenue for this month} + \text{Revenue from next month}
\]

\[45000 = \frac{y}{10} \cdot 10 + (4000 - y)(12) \cdot 12 \]

\[45000 = 10y + 48000 - 12y \]

\[45000 = 10y + 48000 - 12y \]

\[-3000 = -2y \]

\[y = \frac{-3000}{-2} = 1500 \]

\[
\boxed{\text{We may sell a maximum of 1500 units this month.}}
\]
A pet food company needs to calculate how much to charge for a bag of rabbit food that costs $10 to produce. The fixed costs are $15,000. They want to make a profit after selling 4000 bags. What should they charge?

Let \(p \) be the price per bag.

\[
\begin{align*}
\text{Know:} & \quad \text{Profit} = 0 \text{ after selling 4000 bags.} \\
& \quad \text{Profit} = \text{Revenue} - \text{Cost} \\
& \quad \text{Revenue} = \text{quantity} \times \text{price} \\
& \quad \text{Cost} = \text{fixed cost} + \text{quantity} \times \text{cost/} \text{per unit}. \\
\end{align*}
\]

\[
\begin{align*}
0 &= 4000p - (15000 + 4000 \times 10) \\
0 &= 4000p - (15000 + 40000) \\
0 &= 4000p - 55000 \\
-4000p &= -55000 \\
p &= \frac{-55000}{-4000} \\
p &= \$13.75
\end{align*}
\]
Car rental company A rents cars for $32 per day. Company B rents for $31 per day, plus an initial fee of $55. If a customer wants a cheaper rate, when should he rent from company B?

Let \(t \) be the number of days the car is rented.

Cost for A: \(\text{Cost} = 32t \)
Cost for B: \(\text{Cost} = 55 + 21t \)

\[
55 + 21t \leq 32t \\
55 \leq 11t \\
5 \leq t
\]

We should use B if we rent for 5 or more days.
If \(g(x) = \frac{x}{x-4} \), find:

a) the domain.

The denominator can’t be 0.
\[x-4 \neq 0 \]
\[x \neq 4 \]

The domain is all values of \(x \) except \(x=4 \).

b) \(g(0) = \frac{0}{0-4} = \frac{0}{-4} = 0 \) \[\text{If 0 is the numerator and the denominator is 0, the answer is undefined.} \]

c) \(g(-4) = \frac{-4}{-4-4} = \frac{-4}{-8} = \frac{1}{2} \)

d) \(g\left(\frac{1}{2}\right) = \frac{\frac{1}{2}}{\frac{1}{2}-4} = \frac{\frac{1}{2}}{\frac{1}{2} \cdot \frac{8}{8}} = \frac{\frac{1}{2} \cdot 2}{\frac{1}{2} \cdot 8} = \frac{1}{4} \)

e) \(g(x^2) \)

In order to find \(g(x^2) \):

1. Put parenthesis around \(x \) in \(g(x) \).
 \[g(x) = \frac{x}{x-4} \]

2. Replace “x” with “x^2” in the parenthesis.
 \[g(x^2) = \frac{x^2}{x^2-4} \]
Find the domain of \(f(x) = \frac{\sqrt{x-1}}{x^2-9} \).

1. We need the expression under the square root to be \(\geq 0 \).
 \[x - 1 \geq 0 \]
 \[x \geq 1 \] if \(x \) is in the domain.

2. We need the denominator \(\neq 0 \).
 \[x^2 - 9 \neq 0 \]
 \[(x + 3)(x - 3) \neq 0 \]
 \[x \neq -3 \text{ or } x \neq 3. \]

The domain is all real numbers \(\geq 1 \) except for \(x = 3 \).
Given \(f(x) = 3x - 1 \) find \(\frac{f(x+h) - f(x)}{h} \)

To figure out \(f(x+h) \):
1. Rewrite \(f(x) \) by placing \(x \) in parentheses.
 \[f(x) = 3(x) - 1 \]
2. Replace each \(x \) with \(x + h \).
 \[f(x+h) = 3(x+h) - 1 \]
 \[f(x+h) = 3x + 3h - 1 \]

Substitute:
\[
\frac{f(x+h) - f(x)}{h} = \frac{3x + 3h - 1 - (3x - 1)}{h}
= \frac{3x + 3h - 1 - 3x + 1}{h}
= \frac{3h}{h}
= 3
\]

Given \(f(x) = x^2 + 3x - 6 \) find \(\frac{f(x+h) - f(x)}{h} \)

Find \(f(x+h) \):
1. Rewrite \(f(x) \) by placing () around each \(x \):
 \[f(x) = (x^2 + 3x - 6) \]
2. Replace each \(x \) with \(x + h \).
 \[f(x+h) = (x+h)^2 + 3(x+h) - 6 \]
 \[f(x+h) = x^2 + 2xh + h^2 + 3x + 3h - 6 \]

Substitute:
\[
\frac{f(x+h) - f(x)}{h} = \frac{x^2 + 2xh + h^2 + 3x + 3h - 6 - (x^2 + 3x - 6)}{h}
= \frac{x^2 + 2xh + h^2 + 3x + 3h - 6 - x^2 - 3x + 6}{h}
= \frac{2xh + h^2 + 3h}{h}
= \frac{h(2x + h + 3)}{h}
= 2x + h + 3
\]
\[F(x) = \begin{cases}
2x, & x > 3 \\
5, & x = 2 \\
4-x, & x < 2
\end{cases} \]

Find:

a) the domain
\[x \leq 2 \quad \cup \quad x > 3 \]

b) \(F(2) = 5 \)

c) \(F(-2) = 4 - (-2) = 6 \)

d) \(F(5) = 2 + 5 = 7 \)
\[f(x) = 2x + 3 \]
\[g(x) = 3x - 2. \]

a) \((f \circ g)(x) = f(g(x))\)

\[g(x) = 3x - 2. \]
To find \(f(g(x))\):

1. Rewrite \(f(x)\) by plugging \(1\) around each \(x\):
 \[f(x) = 2x + 3 \]
2. Replace each "\(x\)" with "\(g(x)\)"
 \[f(g(x)) = 2(g(x)) + 3 \]
 \[= 2(3x - 2) + 3 \]
 \[= 6x - 4 + 3 \]
 \[= 6x - 1 \]

b) \((g \circ f)(x) = g(f(x))\).

1. \(g(x) = 3x - 2\)
2. \(g(f(x)) = 3(f(x)) - 2\)
 \[= 3(2x + 3) - 2 \]
 \[= 6x + 9 - 2 \]
 \[= 6x + 7 \]
Tara earns $15/hr and Rich earns $18/hr.

a) Write $t(x)$ for Tara's earnings as a function of hours worked.
 Let x be the # of hours worked.
 \[t(x) = \text{rate/hr} \times \# \text{ of hours worked} \]
 \[t(x) = 15x \]

b) Write $r(x)$ for Rich's earnings as a function of hours worked.
 \[r(x) = \text{(rate/hr)} \times \# \text{ of hours} \]
 \[r(x) = 18x \]

c) Assuming they work the same # of hours, write a function $(t+r)(x)$ for their combined earnings as a function of hr worked.
 \[(t+r)(x) = t(x) + r(x) \]
 \[(t+r)(x) = 15x + 18x \]
 \[(t+r)(x) = 33x \]
a) \(f(-1) = 2 \)
b) \(f(0) = 2 \)
c) \(f(2) = 2 \)
d) \(f(3) = 2 \)
e) Domain of \(f(x) \): all real numbers
f) Range of \(f(x) \): all real numbers \(\geq 2 \),
Find the equation of a line with y-int 4 and slope \(-\frac{3}{2}\).

\[y = \frac{m}{x - x_0} = \frac{3}{4 - 6} = \frac{-3 + 7}{4 - 6} = \frac{4}{-2} = -2.\]

Find a general linear eqn for the line that passes thru \((4,3)\) and \((6,7)\).

1. Find slope:

\[y_1 - y_0 = \frac{y_1 - y_0}{x_1 - x_0} = \frac{3 - (-7)}{4 - 6} = \frac{-3 + 7}{4 - 6} = \frac{4}{-2} = -2.\]

2. Use point-slope form:

\[y - y_0 = m(x - x_0),\]
\[y - 3 = -2(x - 6),\]
\[y + 7 = -2x + 12,\]
\[2x + y - 5 = 0\]

Find the eqn of the vertical line thru \((3, -6)\).

Find horizontal line thru \((5, 6)\)

\[y = 6\]
Find the slope-int form of a line thru \((2,-3), (-4,7)\).

1. Find slope
\[m = \frac{y_1 - y_0}{x_1 - x_0} = \frac{-3 - 7}{2 - (-4)} = \frac{-10}{6} = -\frac{5}{3}. \]

2. Use slope-int form:
\[y = mx + b. \]
\[-3 = -\frac{5}{3}(2) + b \]
\[-3 = -\frac{10}{3} + b \]
\[\frac{1}{3} = b \]
\[y = -\frac{5}{3}x + \frac{1}{3} \]

Suppose \(f(x)\) is a linear function w/slope 5 and \(f(1) = 4\). Find \(f(x)\).

Use point-slope form:
\[y - y_0 = m(x - x_0) \]
\[y - 4 = 5(x - 1) \]
\[y = 5x - 1 \]

Given \(f(x)\) is linear and \(f(-2) = 5, f(5) = 2\). Find \(f(x)\).

1. Find slope:
\[m = \frac{y_1 - y_0}{x_1 - x_0} = \frac{5 - 2}{5 - (-2)} = \frac{3}{7} \]

2. Use point-slope form
\[y - y_1 = m(x - x_1) \]
\[y - 5 = -\frac{3}{7} (x - (-2)) \]
\[y - 5 = -\frac{3}{7} (x + 2) \]
\[y + 5 = -\frac{3}{7}x - \frac{6}{7} \]
\[y = -\frac{3}{7}x + \frac{35}{7} \]
Suppose a manufacturer will place 1000 units on the market if the price is $10/unit and 1400 units if the price is $12. Find the supply equation if price and quantity are linearly related.

\[p = \text{price} \]
\[q = \text{quantity} \]

\[
\text{slope: } m = \frac{p_1 - p_0}{q_1 - q_0}
\]

\[p_0 = 10 \quad p_1 = 12 \]
\[q_0 = 1000 \quad q_1 = 1400 \]

\[m = \frac{12 - 10}{1400 - 1000} = \frac{2}{400} = \frac{1}{200} \]

Use point-slope form:

\[p - p_1 = m (q - q_1) \]

\[p - 12 = \frac{1}{200} (q - 1400) \]

\[p - 12 = \frac{1}{200} q - 7 \]

\[p = \frac{1}{200} q + 5 \]
Suppose the cost to produce 100 units is $5000 and the cost to produce 125 units is $6000. If cost and output are linearly related, find an equation relating \(c \) and \(q \).

\[
m = \frac{c_1 - c_0}{q_1 - q_0} = \frac{5000 - 6000}{125 - 100} = \frac{-1000}{-25} = m = 40
\]

Use point-slope form:

\[
C - c_1 = m(q - q_1)
\]

\[
C - 5000 = 40(q - 100)
\]

\[
C = 40q - 4000
\]

\[
C = 40q + 1000
\]
The demand for an automobile is 400 when the price is $16,700 and 500 if the price is $14,900. Find the demand eqn if this relation is linear.

Let \(q \) be \# of units
\(p \) be the price.

1. Find slope
\[
m = \frac{p_1 - p_0}{q_1 - q_0} = \frac{16,700 - 14,900}{500 - 400} = \frac{1,800}{100} = -18.
\]

2. Use point-slope form:
\[
p - p_1 = m(q - q_0)
\]
\[
p - 14,900 = -18(q - 500)
\]
\[
p - 14,900 = -18q + 9,000
\]
\[
p = -18q + 23,900
\]
The demand for a company is
\[p = 300 - 5q \]
where \(p \) is the price per unit and \(q \) is the quantity demanded. Find the production level that maximizes the total revenue, and find this revenue.

i) Find production level.

\[
\text{total revenue} = p \times q = (300 - 5q)q
\]

\[
r = 300q - 5q^2
\]

\[
r = -5q^2 + 300q
\]

\[
q_{\text{max}} = -\frac{b}{2a} = -\frac{300}{2(-5)} = 30
\]

ii) Find max rev:

\[
r = -5q^2 + 300q
\]

\[
r_{\text{max}} = -5(30)^2 + 300(30)
\]

\[
r_{\text{max}} = -5(900) + 9000
\]

\[
r_{\text{max}} = 4500
\]