Transformations of Graphs

Vertical Shifts

\[y = f(x) + k \]
Shifts graph \(k \) units up
(Add \(k \) to \(y \)-coordinate)

\[y = f(x) - k \]
Shifts graph \(k \) units down
(Subtract \(k \) from \(y \)-coordinate)

Horizontal Shifts

\[y = f(x - h) \]
Shifts graph \(h \) units to the right
(Add \(h \) to \(x \)-coordinate)

\[y = f(x + h) \]
Shifts graph \(h \) units to the left
(Subtract \(h \) from \(x \)-coordinate)

Stretching and Compressing

Vertical

\[y = c \cdot f(x), \text{ where } c > 1 \]
Stretches graph vertically away from \(x \)-axis by a factor of \(c \)
(Multiply \(y \)-coordinate by \(c \))

\[y = c \cdot f(x), \text{ where } 0 < c < 1 \]
Compresses graph vertically towards \(x \)-axis by a factor of \(c \)
(Multiply \(y \)-coordinate by \(c \))

Horizontal

\[y = f(c \cdot x), \text{ where } 0 < c < 1 \]
Stretches graph horizontally away from \(y \)-axis by a factor of \(\frac{1}{c} \)
(Multiply \(x \)-coordinate by \(\frac{1}{c} \); i.e. the reciprocal of \(c \))

\[y = f(c \cdot x), \text{ where } c > 1 \]
Compresses graph horizontally towards \(y \)-axis by a factor of \(\frac{1}{c} \)
(Multiply \(x \)-coordinate by \(\frac{1}{c} \); i.e. the reciprocal of \(c \))

Reflections

\[y = -f(x) \]
Reflects graph about the \(x \)-axis
(Multiply \(y \)-coordinate by \(-1 \))

\[y = f(-x) \]
Reflects graph about the \(y \)-axis
(Multiply \(x \)-coordinate by \(-1 \))